Chronic Antidiabetic Sulfonylureas In Vivo: Reversible Effects on Mouse Pancreatic β-Cells

نویسندگان

  • Maria Sara Remedi
  • Colin G Nichols
چکیده

BACKGROUND Pancreatic beta-cell ATP-sensitive potassium (K ATP) channels are critical links between nutrient metabolism and insulin secretion. In humans, reduced or absent beta-cell K ATP channel activity resulting from loss-of-function K ATP mutations induces insulin hypersecretion. Mice with reduced K ATP channel activity also demonstrate hyperinsulinism, but mice with complete loss of K ATP channels (K ATP knockout mice) show an unexpected insulin undersecretory phenotype. Therefore we have proposed an "inverse U" hypothesis to explain the response to enhanced excitability, in which excessive hyperexcitability drives beta-cells to insulin secretory failure without cell death. Many patients with type 2 diabetes treated with antidiabetic sulfonylureas (which inhibit K ATP activity and thereby enhance insulin secretion) show long-term insulin secretory failure, which we further suggest might reflect a similar progression. METHODS AND FINDINGS To test the above hypotheses, and to mechanistically investigate the consequences of prolonged hyperexcitability in vivo, we used a novel approach of implanting mice with slow-release sulfonylurea (glibenclamide) pellets, to chronically inhibit beta-cell K ATP channels. Glibenclamide-implanted wild-type mice became progressively and consistently diabetic, with significantly (p < 0.05) reduced insulin secretion in response to glucose. After 1 wk of treatment, these mice were as glucose intolerant as adult K ATP knockout mice, and reduction of secretory capacity in freshly isolated islets from implanted animals was as significant (p < 0.05) as those from K ATP knockout animals. However, secretory capacity was fully restored in islets from sulfonylurea-treated mice within hours of drug washout and in vivo within 1 mo after glibenclamide treatment was terminated. Pancreatic immunostaining showed normal islet size and alpha-/beta-cell distribution within the islet, and TUNEL staining showed no evidence of apoptosis. CONCLUSIONS These results demonstrate that chronic glibenclamide treatment in vivo causes loss of insulin secretory capacity due to beta-cell hyperexcitability, but also reveal rapid reversibility of this secretory failure, arguing against beta-cell apoptosis or other cell death induced by sulfonylureas. These in vivo studies may help to explain why patients with type 2 diabetes can show long-term secondary failure to secrete insulin in response to sulfonylureas, but experience restoration of insulin secretion after a drug resting period, without permanent damage to beta-cells. This finding suggests that novel treatment regimens may succeed in prolonging pharmacological therapies in susceptible individuals.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanistic in vitro evaluation of Prosopis farcta roots as an antidiabetic folk medicinal plant

Background and objectives: Prosopis farcta has been used as a traditional herbal medicine for treating diabetes mellitus.The aim of this study was investigating the antidiabetic mechanisms of infusion extract of P. farcta and discovering the active extract for the first time. Methods: Six different extracts of P. farcta were ...

متن کامل

ATP-modulated K+ channels sensitive to antidiabetic sulfonylureas are present in adenohypophysis and are involved in growth hormone release.

The adenohypophysis contains high-affinity binding sites for antidiabetic sulfonylureas that are specific blockers of ATP-sensitive K+ channels. The binding protein has a M(r) of 145,000 +/- 5000. The presence of ATP-sensitive K+ channels (26 pS) has been demonstrated by electrophysiological techniques. Intracellular perfusion of adenohypophysis cells with an ATP-free medium to activate ATP-sen...

متن کامل

بررسی القای تمایز سلول‌های بنیادی به سلول‌های بتای پانکراس به‌وسیله عصاره متانولی یونجه

Background and Objective: β cell replacement therapy by pancreatic islet transplantation has become a promising treatment for type 1 diabetes. Medicago sativa L (Lucerne) from leguminosae family is known to exhibit hypoglycaemic activity both in animal and human studies. Most of these studies were concentrated on the effects of plant extracts on fasting glucose levels. Until now no researches h...

متن کامل

Rapid insulinotropic effect of 17beta-estradiol via a plasma membrane receptor.

Impaired insulin secretion is a hallmark in both type I and type II diabetic individuals. Whereas type I (insulin-dependent diabetes mellitus) implies ss-cell destruction, type II (non-insulin dependent diabetes mellitus), responsible for 75% of diabetic syndromes, involves diminished glucose-dependent secretion of insulin from pancreatic beta-cells. Although a clear demonstration of a direct e...

متن کامل

Chronic stress accelerates pancreatic cancer growth and invasion: a critical role for beta-adrenergic signaling in the pancreatic microenvironment.

Pancreatic cancer cells intimately interact with a complex microenvironment that influences pancreatic cancer progression. The pancreas is innervated by fibers of the sympathetic nervous system (SNS) and pancreatic cancer cells have receptors for SNS neurotransmitters which suggests that pancreatic cancer may be sensitive to neural signaling. In vitro and non-orthotopic in vivo studies showed t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • PLoS Medicine

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2008